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We address several problems concerning thermal hysteresis and its characterization. Based on the
time-dependent Ginzburg-Landau theory of the (®2)* model with O(N) symmetry in the large -N limit,
we obtain numerically familiar spindle-shaped thermal hysteresis loops under linearly varying tempera-
ture. These hysteresis loops can be presented in the coordinate plane formed by the reduced tempera-
ture and its conjugate variable, so that the enclosed areas A of the loops represent directly the dissipa-
tion in the cycles. Moreover, this dissipation scales with the rate of temperature scanning R as
A= Ay+aR", with n approaching two-thirds, universal for both the mean-field and field theoretical
models concerned. The scaling results from the nature of the equilibrium transition point involved.

PACS number(s): 64.60.Cn, 75.60.Nt, 05.70.Fh, 82.20.Mj

There is recent interest in phase transitions driven by
time-dependent external fields [1-6], and a scaling law of
the areas of the hysteresis loops with the amplitude H,
and frequency Q of the applied field has been obtained to
be

A~H{OP . (1

Rao and co-workers [1,2] used a time-dependent
Ginzburg-Landau (TDGL) theory of a nonconserved N-
component order parameter in large-N limit with a
sinusoidal magnetic field to obtained hysteresis loops and
proposed the area scaling with a~0.66%£0.05 and
B~0.33£0.3, universal for both ($?)? and ($?)* models.
Monte Carlo simulation of the two-dimensional (2D) Is-
ing model by Lo and Pelcovits [3] confirmed the scaling
and produced the exponents a~0.46+0.05 and
B~0.36+0.06. Cell dynamical simulation of the TDGL
equation for a scalar 2D (®?)> model by Sengupta,
Marathe, and Puri [4] yielded a~0.47+0.02 and
B~0.40+0.01 in accordance with Lo and Pelcovits. For
the large-N model, qualitative analysis by Dhar and Tho-
mas [5] gave a=pB=1. Using the singular perturbation
method, Somoza and Desai [6] showed analytically that
for small field the full dynamical evolution of the order
parameter, not only the exponents, is universal; this is in-
dependent of the particular form of the free energy and N
for N > 2. Their results are based on the instability in the
transverse direction of the system under the application
of the external field opposed to the magnetization. For
small field amplitude and frequencies, sinusoidal and
sawtooth varying fields give rise to the same exponents 1,
which have also been confirmed by direct numerical in-
tegration [5,6] of the same equation as used by Rao and
co-workers [1,2].

In addition to the spin systems, nonequilibrium transi-
tions also involve time-dependent bifurcation parameters
driving the systems to switch between the bistable states.
The evolution of some of these systems, including none-
quilibrium chemical reactions and laser, can be reduced
to a single mode governed by a dynamic equation corre-
sponding to the mean-field model of the spin systems.
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For small frequencies of the driving field, the solution of
the equation by Jung and co-workers [7] gave the ex-
ponents a=pB=2, different from Rao and co-workers,
which has been a subject of debate [8].

Besides magnetic hysteresis, thermal hysteresis has also
been investigated preliminarily by Rao and Pandit [2] in
the (®2)® model. The areas of the loops, as measured in
the coordinate system of magnetic moment M and the re-
duced temperature r, also scale with the amplitude for
low values of the periodically oscillating temperature, but
with an exponent equal to one [2]. Although they
claimed that their results were consistent with existing
experimental data on ferroelectrics and charge-density
waves, the fingerlike shape of their thermal hysteresis
loops did not resemble at all any familiar spindle-shaped
ones. The hysteresis loops saturate only in the paramag-
netic phase, but are rounded in the ferromagnetic one.
Moreover, the areas of the loops in the M -r frame have
no direct physical meaning.

Experimentally, a more easily realizable way of varying
the temperature is by changing it linearly, rather than
periodically. A common realization is by thermal
analysis, the distinctive mode of which, among others, is
changing temperature linearly with prescribed rates.
These nonisothermal methods have the advantage of ra-
pidity and effectiveness for those too slow and rapid tran-
sient transformations. A long standing question of these
methods, however, concerns the rate of temperature
scanning [9]. As hysteresis is frequently observed, none-
quilibrium prevails and dissipation always comes into
play. Consequently, hysteresis should depend on the
rate of the process. As no work from basic principles, to
our knowledge, has dealt with the relationship between
hysteresis and temperature scanning rate, we address it
here with a twofold purpose from prototype models fa-
miliar in the dynamics of first-order transitions, to see
whether these models can tackle this problem and to pro-
vide theoretical insight for the experiment.

Thus, we will only concentrate on the case of linearly
varying temperature. We show that the same (®?)* mod-
el can give the familiar hysteresis loops. Furthermore, in
the plane of the reduced temperature and its conjugate

2898 ©1995 The American Physical Society



51 SCALING OF THERMAL HYSTERESIS WITH TEMPERATURE . ..

variable, the areas of the hysteresis loops, a direct mea-
sure of energy dissipation per sweep cycle, scale with the
rate of temperature varying R as

A=A,+aR", (2)
where n approaches two-thirds and 4, and a are con-
stants. The scaling is universal for the thermal hysteresis
loops studied here.

As a preliminary, we consider first the mean-field mod-
els that have temperature driven transitions. Consider a
general Landau free-energy

F—Fo=1rM?*+1oM*+luM*+ LeM >+ LoM®
+ - +HM , (3)

where, as usual, r stands for the distance from the mean-
field temperature: r=a'(T—1T,), a’, b, ¢, u, and v con-
stants. H is the conjugate field, and F is the background
free-energy. When no inversion symmetry exists, the first
three terms in the expansion with b <0 suffice for a first-
order temperature driven transition (M?® model). Other-
wise b =c =0 and expansion to the sixth order is needed
(M® model). Dynamics is governed by the purely relaxa-
tional TDGL equation without noise. Generic numerical
results of the M ® model with H=0.1 are shown in Fig. 1
for several temperature change rates. Also shown in the
figure are the equation of state with different value of H
(solid lines) and the spinodal points (dashed lines). It is
clear that the temperature driven transitions with hys-
teresis take place when H < H_, the critical point.

To obtain dissipation during one cycle, like the en-
closed areas of magnetic hysteresis loops, we have to
switch from moment versus temperature hysteresis loops
to the reduced temperature r and its conjugate variable,
so that from thermodynamic relations the area enclosed
represents free-energy dissipation per cycle. Here the
variable s conjugate to r, due to ordering is simply

IHF—F,)
s=——r—| =—1iM?. (4)
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FIG. 1. Magnetic moment M vs reduced temperature r.

Solid lines, state equation H =rM +uM 3+uM? for different H
indicated: dashed line, spinodal points: thin lines with symbols,
dynamic curves for different scanning rate R with H=0.1.
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FIG. 2. Log-log plot of dissipation A vs temperature scan-
ning rate R. Numbers in the upper-right legend after the sym-
bols represent different choices of parameters given in the
lower-left legend. MF means mean-field result of M¢ model.
M? model is represented by the parameters b= —3, u =1, and
H=0.1. Note that the constant term A, has been subtracted to
give straight lines.

Dissipation obtained in this way scales with the rate of
temperature sweeping as Eq. (2), with 4, the area formed
by the static curve between the spinodal points and n
equal to two-thirds, as shown in Fig. 2. The result of the
M? model is also given and also manifests similar
behavior.

This scaling behavior can readily be confirmed follow-
ing the theory of Jung and co-workers [7], although it is
7, not the field H, that is varied. Since the transitions
take place near the spinodal point, we can expand s and
M at it, resulting in a Riccati equation, second order in s
and M. This leads to the scaling behavior obtained nu-
merically here, which is universal both for M 3 and M*
models.

Having considered the mean-field models, we now
proceed to the field theoretic O(N)-symmetric (®?)* mod-
el with N approaching infinity, described by the
Ginzburg-Landau free-energy functional

F[®]=1 [ d'% <v¢)2+rq>2+5’fﬁ<q>2>2

v

3N2(<1>2)3—2\/NH-<1> )

-+

This is the same model as used by Rao and Pandit [2]. In
the limit N — o, the dynamic equations of the system are
reduced to a set of integro-differential equations that can
be solved numerically. Given appropriate parameters u,
v, and H, to obtain hysteresis loop under linearly varying
temperature of rate R, we start from an appropriate ini-
tial condition and drive the system to the paramagnetic
phase, then cool to the ferromagnetic one and finally heat
back to reach a closed cycle. The initial condition is ir-
relevant to the results: Steady state can be easily reached
from an arbitrary initial condition. Also irrelevant is the
direction of changing temperature. Generic hysteresis
loops are shown in Fig. 3. It is found that as H becomes
smaller, the hysteresis loops become more asymmetric
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FIG. 3. Generic hysteresis loops of magnetization M vs tem-
perature r for different temperature scanning rates R.

and shift to lower temperatures. This is the reason why
saturation in the order phase could not be obtained in the
previous work.

It can be seen that, like the mean-field cases, the transi-
tion temperature has to go beyond a certain spinodal
point as indicated by the static curve. This is different
from the magnetic hysteresis loops that can go inside the
spinodal point. This essentially different feature results
from the nature of the equilibrium first-order phase tran-
sition point. In the magnetic hysteresis, there are con-
tinuous paths, i.e., the transverse instability [5], due to
the continuum symmetry, connecting the two phases
with opposite magnetization, which are degenerate when
no external magnetic field is applied. In the thermal hys-
teresis loops considered here, no such paths exist to cir-
cumvent the barrier; the transition can only take place at
the spinodal point, where the barrier vanishes, as in the
case of mean-field theories. Therefore, it is expected that
the thermal hysteresis here belongs to the class of Eq. (2),
with a finite zero-rate area A, like the mean-field case
above.

In order to obtain the dissipation per cycle, note that
the equilibrium distribution takes the form exp(—F); ac-
cordingly, the variable s, conjugate to r is given by

—8InZ _ 1 G2
s 3 27 %@ exp(—F) , (6)

where Z is the partition function Y exp(—F). Therefore,
in equilibrium each component has
s=—1(M>+8), @)

with § the integrated structure factor of the transverse
correlation function C,(q,t) [2], i.e.,

& 1 1 2
S—?fo dg q°C,(g,1) . (8)
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FIG. 4. s vs r of the generic hysteresis loops in Fig. 3. Note
that s is given in —s.

We extend to nonequilibrium this definition of s, as it
reduces naturally to the mean-field result, since S=0
when fluctuations are ignored.

The results of s versus 7 are shown in Fig. 4 for those
loops in Fig. 3. Areas of the hysteresis loops increase
with the rate of temperature scanning as expected, and
scale as Eq. (2) like the mean-field results: This is
different from the magnetic hysteresis of the same model,
albeit fluctuations have been included. The scaling for
various choices of parameters is presented in Fig. 2. It
shows clearly that all have nearly the same slopes of two-
thirds. It should be emphasized that exponents for the
scaling with the rate of the areas of loops in the M-r
frame, however, varied with the external magnetic field
applied. Therefore, our characterization of hysteresis
loops is more meaningful and fruitful.

In summary, we have attained familiar thermal hys-
teresis loops under linearly varying temperature on the
basis of the time-dependent Ginzburg-Landau theory of a
(®?)* model with continual symmetry. We have also cast
the hysteresis loops in the frame of the reduced tempera-
ture and its conjugate variable, so that the enclosed areas
of the loops represent directly the dissipation in the cy-
cles. The dissipation so obtained increases with the scan-
ning rate of temperature and exhibits a scaling of Eq. (2)
with an exponent equal to two-thirds and a finite zero-
rate dissipation for both mean-field and field theories.
Furthermore, the exponent is independent of the applied
field, which is an important consequence of our represen-
tation of hysteresis loops, and makes the results more
meaningful. This scaling is different from the magnetic
hysteresis one that has no 4, and one-half power ex-
ponent [5,6]. The difference results from the nature of
the equilibrium transition point.
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